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Abstract: We examine the limit behavior of various triangle circles, called “limit 
circles”, as the vertices of the triangle coalesce.  

Introduction 

To aid my research I used mathematical software programs, most importantly 
Geometry Expressions and Maple. The use of technology allowed me to complete 
this research topic successfully. I was able to visualize the problems I was trying 
to solve and eliminate a great deal of error from my work by utilizing these 
programs. This allowed me to use creativity in studying my topic and quickly find 
solutions to the problems I faced. 

Limit Circles 

A “limit circle” is an extension of the concept of single dimension interpolation 
where two or more points have coalesced. The limit circumcircle is a simple, non-
trivial case of multidimensional interpolation through points that have coalesced. 
We will see that the limit circumcircle has some unexpected properties, especially 
in terms of its relation to the other triangle circles. 
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Limit Circumradius – Two Coalescing Points: 
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Figure 1. Triangle ABC with circumcircle 

We start by examining the limit of the circumradius of a triangle as two of the 
vertices coalesce. To define the radius of the limit circle, we examine the 
behavior of the circle as vertices B and C approach one another. 

Using the Law of Sines, we know that the circumradius R of triangle ABC with 

sides a, b, and c opposite the angles A, B, and C is
)sin(2 A

a
R = . When vertices B 

and C coalesce, side a and angle A collapse. Thus we can define side a and angle 
A as the two functions a(t) and A(t), such that a(0)=0 and A(0)=0. We take the 
limit of R as t approaches 0: 
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Apply l’Hopital’s rule to find the limit radius: 
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But what happens if the derivatives are equal to 0? 
)0('2
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 now is the base case 

where n=1 of the function 
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n
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nR = where 0)0(...)0('')0(' 1 ==== −n

aaa  

and 0)0(...)0('')0(' 1 ==== −n
AAA . R(1) holds, so we will now prove R(n) for all 

n>1. Assume R(k) is true. In the next case k+1, the derivatives of a(t) and A(t) 
equal 0 up until k derivations: 
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0)0(...)0('')0(' ==== k
aaa  

0)0(...)0('')0(' ==== k
AAA  

R(k) now equals 0/0, so we apply l’Hopital’s rule, which gives us 
)0(2

)0(
1

1

+

+

k

k

A

a
, which 

is equal to R(k+1). Thus, by induction we have shown that R(n) is the radius of 
the limit circumcircle as two of the vertices of the triangle coalesce. 
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Figure 2. Triangle ABC has collapsed into a line, but the limit circumcircle exists 

Limit Circumradius – Three Coalescing Points 

Next we examine the limit of the circumcircle of a triangle as all three of its 
vertices coalesce. Once again, we use the Law of Sines to define the 
circumradius: 

)sin(2 A

a
R =  

In any situation where the three vertices coalesce, sides a, b, and c approach 0. 
However, angles A, B, and C can approach any value. We once again define side 
a and angle A in terms of the functions a(t) and A(t) such that a(0)=0 and try to 
find the limit circumradius by taking the limit of R as t approaches 0: 

)
))(sin(2

)(
(lim
0 tA

ta

t→
 

Clearly the circumradius will be 0 unless sin(A(0))=0 so we can apply l’Hopital’s 
rule. Therefore, A(0) must either equal 0 or 180 degrees. We now have the same 
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situation as two coalescing points. Following the same steps as last time, we find 

the circumradius as three points coalesce is either 
)0(2

)0(
n

n

A

a
 when A(0)=0 or 

)0(2

)0(
n

n

A

a
−  when A(0)=180, where the derivatives of a(t) and A(t) are 0 up to n-1 

derivations. 

 

Limit Circle Location 

Now that we have defined the radius of the limit circumcircle, we will examine 
where this circle is located with respect to the three points that define it. We 
start with two coalescing vertices. If we move two points towards each other 
along any curve, the line formed by these two points is an approximation of the 
slope of the curve. The approximation becomes more and more accurate until 
the two points coalesce, when the slope of the line at the limit becomes the 
instantaneous slope of the curve where the two points coalesced. The line is now 
tangent to the curve. 
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Figure 3. Limit circumcircle is tangent to the path along which points coalesce 
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It seems that it is possible to apply this to a limit circumcircle. The circle formed 
by two coalescing points should be tangent to the line formed by the coalescing 
vertices at the point at which they coalesce. 

To prove this, we define the points separately, rather than as vertices of a 
triangle. We then examine two circles: one that intersects the three points, and 
one that intersects one point and is tangent to the line formed by the other two 
at one of the points. If we can show that at the limit the two circles are 
equivalent, then we have shown that a limit circumcircle is tangent to the line 
formed by two coalescing points. 

 

Let points A and C be defined parametrically and point B be set to coordinates 
(1,0). 

Point A: X=x1(t), Y=y1(t) 

Point C: X=x2(t), Y=y2(t) 

Such that x1(0) = y1(0) = x2(0) = y2(0) = 0. 

 

Equation of a circle formed by points A, B, and C: 

F:= 
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Limit of F as t approaches 0: 

0  
(0)'y-(0)'y

(0))'x-(0)'Y(x
Y

(0)'y-(0)'y

(0))'y-(0)'X(y
X

12

122

12

212 =+++  

 

Equation of a circle that intersects point B and is tangent to the line AC at point 
A: 

G:= 
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Limit of G as t approaches 0: 
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We can extend this to the limit circumcircle formed by three coalescing vertices. 
Because one of the angles must equal 180 degrees at the limit for the limit circle 
to exist, the three lines formed by the vertices must be equal at the limit. As we 
have shown, the limit circle is tangent to the line formed by two coalescing 
points at the limit. Since the three lines are equivalent, the limit circumcircle is 
tangent to all three lines at the point at which the three vertices coalesce. 
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An Example: 
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Figure 4. A specific merge path for coalescing points 

 

Points A, B, and C move along different parametric functions such that lines AB, 
BC, and CA are equal when the points coalesce at the origin. Using Geometry 
Expressions we calculate the symbolic radius of the circle. Then using Maple, we 
take the limit as t approaches 0 to find the limit radius: 

> limit(1/2*((t*c-t*e)^2+(t^2*d-t^3*f)^2)^(1/2)*((t*a-
t*e)^2+(t^2*b-t^3*f)^2)^(1/2)*((t*a-t*c)^2+(t^2*b-
t^2*d)^2)^(1/2)/(t^3*c*b-t^3*d*a-t^3*e*b+t^3*e*d+t^4*f*a-
t^4*f*c), t=0, left); 

1

2

( ) − c e
2 ( ) − a e

2 ( ) − a c
2

−  +  +  − c b d a e b e d
 

> simplify(1/2*((c-e)^2)^(1/2)*((a-e)^2)^(1/2)*((a-
c)^2)^(1/2)/(-c*b+d*a+e*b-e*d),'symbolic'); 
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1
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Then we calculate angle A and the opposite side BC. We put these two equations 
into Maple in the form (side)/(2(angle)) and take the limit as t approaches 0: 

> limit(1/2*((-t*c+t*e)^2+(-t^2*d+t^3*f)^2)^(1/2)/arctan(((-
c*b+d*a+e*b-e*d)*t+(-f*a+f*c)*t^2)/(-a^2+c*a+e*a-e*c+(-
b^2+d*b)*t^2+(f*b-f*d)*t^3)), t=0, left); 
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2
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2 ( ) −  −  + a

2
c a e a e c

−  +  +  − c b d a e b e d
 

> factor(1/2*((c-e)^2)^(1/2)/(-c*b+d*a+e*b-e*d)*(a^2-c*a-
e*a+e*c)); 

1

2

( ) − c e
2 ( ) − a e ( ) − a c

−  +  +  − c b d a e b e d
 

> simplify(1/2*((c-e)^2)^(1/2)*(a-e)*(a-c)/(-c*b+d*a+e*b-
e*d),'symbolic'); 

1

2
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The two equations are equal. 
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Figure 5. Limit circumcircle for the example of figure 4 

Various Limit Triangle Circles – Three Coalescing 
Vertices: 

Interestingly, many of the various circles defined by a triangle can be defined 
very simply in terms of the circumradius when the three vertices of the triangle 
coalesce. 

We know that at the limit when the three vertices of the triangle ABC coalesce, 
angle A approaches 180 degrees, angle B approaches 0 degrees, and angle C 
approaches 0 degrees while sides a, b, and c approach 0. One important 
property of the limit triangle is that the Brocard angleω approaches 0. If we take 

the limit of the equation of the Brocard angle: 









+

=
CBA

CBA

coscoscos1

sinsinsin
arctanω  
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We find that ω =0. Another property is the fact that the rate of change of the 

semiperimeter, s, is equal to the rate of change of side a at the limit. Using the 

Law of Sines we know that 
'

''
'

A

aB
b

−
=  and 

'

)''('
'

A

BAa
c

+
= . If we take the 

derivative of s, we get 
2

c'b'a'
'

++
=s . Substituting these values, we get a’. 

Using these properties of a limit triangle, we can find the radii of various other 
triangle circles. I will use the following format: lim(Original Radius)=Limit Radius. 
Note that R is the circumradius, and r is the inradius. As will be shown later, r=0 
at the limit. 

Anticomplentary Circle: 

( ) RR 22lim =  

Apollonius Circle: 

The radius of the Circle of Apollonius is not directly related to the circumradius. 

Bevan Circle: 

( ) RR 22lim =  

Brocard Circle: 

2/
)cos(2

)(sin41
lim

2

R
R

=












 −

ω
ω

 

Conway Circle: 

( ) 0lim 22 =+ sr  

Cosine Circle: 

( ) 0)tan(lim =ωR  

De Longchamps Circle: 

( ) RCBAR 4coscoscos4lim =−  

Excircles: 

( ) RCBAR 4)2/cos()2/cos()2/sin(4lim =  

Note that this equation only applies to the excircle opposite angle A. The 
excircles opposite angles B and C have radii of 0 because sin(0)=0 

Extangents Circle: 

The limit radius appears to be R/2. 
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Fuhrmann Circle:  
The radius of the Fuhrmann Circle is the distance between the incenter and 

circumcenter of the triangle, determined by the equation )2( rRR − . 

( ) RrRR =− )2(lim  

Gallatly Circle: 

( ) 0)sin(lim =ωR  

Half-Altitude Circle: 

The limit radius appears to be 2R. 

Half-Moses Circle: 

0
2

)2sin()tan(
lim =







 ωωR
 

Hexyl Circle: 

( ) RR 22lim =  

Incenter-Excenter Circle: 

( ) RAR 2)2/sin(2lim =  

Incentral Circle: 

The radius of the Incentral Circle is not directly related to the circumradius at the 
limit. 

Incircle: 

( ) 0)2/sin()2/sin()2/sin(4lim =CBAR  

Inner Napoleon Circle: 

0
23

34
lim

222

=












 ∆−++ cba
 

∆ is the area of the triangle. 

Inner Soddy Circle: 

Because the Soddy Circles have radii of 0 at the limit, the Inner Soddy Circle 
which is externally tangent to them will also have a limit radius of 0. 

Intangents Circle: 

0
coscoscos4

lim =










CBA

r
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Johnson-Yff Circles: 

0lim =







± Rr

rR
 

Kenmotu Circle: 

0
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sin2
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
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Longuet-Higgins Circle: 

( ) RcbaR 4)(16lim 22 =++−  

Lucas Circles: 
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Lucas Circles Radical Circle: 

0
2cot
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
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Lucas Inner Circle: 

0
7cot

lim =







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Malfatti Circles: 

The Malfatti Circles are in the interior of the triangle, so at the limit they collapse 
to a point. 

Mandart Circle: 

∞=












 −−−

abc

abRcaRbcRs )4)(4)(4(
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Mixtilinear Circle: 

The radius of the Mixtilinear Circle is not directly related to the circumradius at 
the limit. 

Mixtilinear Incircle: 

The radius of the Mixtlinear Incircle is not directly related to the circumradius at 
the limit. 
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Moses Circle: 

( ) 0)2sin()tan(lim =ωωR  

 

Nine-Point Circle: 

( ) 2/2/lim RR =  

Orthoptic Circle of the Steiner Inellipse: 

0
3
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
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Outer Napoleon Circle: 
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
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
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∆ is the area of the triangle. 

Pedal Circles: 

The radius of a Pedal Circle is not directly related to the circumradius at the limit. 

 

Polar Circle: 

R
cba

R 2
2

4lim
222

2 =












 ++
−  

Power Circles: 
The radii of the power circles at the limit is 0 because the midpoints and vertices 
of a triangle collapse into one point, and the power circles are centered at the 
midpoints and intersect the opposite vertex. 

Sine-Triple-Angle Circle: 

7/
coscoscos81

lim R
CBA

R
=











+
 

Spieker Circle: 

( ) 02/lim =r  

Stammler Circle: 

( ) RR 22lim =  
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Stammler Circles: 

R
CBCBCB

R 3
3

2
cos

3

2
cos

3
cos81lim =

















 +







 +







 −
+  

Note that this is the equation of the Stammler Circle opposite angle A. The other 
Stammler Circles have radii of 0 at the limit. 

Steiner Circle: 

2

3

2

3
lim

RR
=








 

Symmedial Circle: 
The radius of the Symmedial Circle is not directly related to the circumradius. 

Tangential Circle: 

4/
coscoscos4

lim R
CBA

R
=










 

Taylor Circle: 

( ) RCBACBAR =+ )(cos)(cos)(cos)(sin)(sin)(sinlim 222222  

Tucker Circle: 

( ) RR λωλλ =−+ )(tan)1(lim 222  

λ is the parameter of any Tucker Circle. 

Van Lamoen Circle: 
The limit of the radius of the van Lamoen circle appears to be infinite. 

Yff Circles: 

The radius of an Yff circle is equal to a Johnson-Yff Circle, so the radius is 0 at 
the limit. 

Yiu Circle: 
The limit of the radius of the Yiu Circle appears to be R/9. 

Yiu Circles: 
The limits of the radii of the Yiu Circles appear to be R/3. 

A list of these triangle circles and more can be found at 
http://mathworld.wolfram.com/topics/TriangleCircles.html.  
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Figure 6. A number of triangle circles defined by triangle ABC. When A, B, and C coalesce, they 
become much simpler 
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AC
B

 

Figure 7. Limits of the cirtcles in figure 6. The circle in this diagram that is not directly defined by 
the circumradius is the Circle of Apollonius, the largest defined circle in the diagram. Note that 
one circle in this diagram is not tangent to the lines AB, BC, and CA (the dashed lines): the Yiu 

Circle, which is also the smallest circle in the diagram. Also note that the Mandart Circle 
approaches infinity, becoming a line that is equivalent to the lines AB, BC, and CA  

 

 


